BBlustering
MCBB.bbcluster
โ Functionbbcluster(D::AbstractDistanceMatrix, dplus::AbstractVector{T}, dminus::AbstractVector{T}, pars::AbstractVector{T}, p_eps::T, minpts::Int; k::S=1.5, par_distance_func::Union{Function, Nothing}=nothing) where {T,S}<:Real
Performs the BBClustering, a modified DBSCAN clustering adjusted for Basin Bifurcation Analysis
Inputs:
D
: Distance Matrix (NxN
)dplus
: Response of Distance Measure atp+\delta p
dminus
: Response of Distance Measure atp-\delta p
pars
: Parameter vectordelta_p
: Used to estimate responsedplus
anddminus
p_eps
: Epsilon Parameter, only points with parameters closer thanp_eps
are connected.minpts
: Minimum number of points for a cluster, otherwise outlierk
: Paramater for the clustering, should be1 < k < 2
par_distance_func
: Distance function for parameters, check:par_distance_func(pars[i],pars[j]) < p_eps
bbcluster(D::AbstractArray, prob::MCBBProblem, sol::MCBBSol, deltap::T; peps::Union{Nothing,T}=nothing, minpts::Int=1, k::Number=1.5, pardistancefunc::Union{Function,Nothing}=nothing) where T<:Real
Convenience wrapper of the above defined function with 'MCBBProblem' and 'MCBBSol' as inputs. Default value for p_eps
is five times the mean parameter difference.
MCBB.BBClusterResult
โ TypeBBClusterResult <: ClusteringResult
Contains the solutions of the bbcluster
. Has the fields seeds
, assignments
and counts
.